
EFFECT OF THERMALIZED ELECTRONS ON THE ENERGY RELEASE OF A HIGH- 

CURRENT ELECTRON BEAM IN A TARGET 

G. E. Gorelik, A. I. Pobitko, S. G. Rozin, 
and L. I. Sal'nikov 

UDC 537.533.7 

The Monte Carlo method is used to study the effect of the self-magnetic field 
of thermalized electrons on the energy release in metal targets. 

The effect of the self-magnetic field of a high-current electron beam (HEB) on the 
passage of the beam through matter was the subject of a number of recent studies [1-4]. 
Some of them consider only the magnetic field of fast electrons (for metals) [3, 4] and 
others (for dielectrics) consider only the effect of thermalized electrons on the self- 
electric field [5]. Yalovets [2] demonstrated that the current of thermalized electrons 
must also be taken into account in metals, where because of the high conductivity it is 
rather large, despite the weakness of the electric field. 

Here we study the effect of the current of thermalized electrons on the energy-loss 
distribution of fast electrons of a HBE in metal targets. The problem is solved in the 
quasi-steady approximation, i.e., we assume that the relaxation time of fast electrons is 
substantially shorter than the characteristic time of beam-parameter variation. Moreover, 
we assume that the transient terms in the Maxwell equations can be disregarded. 

When these assumptions are made and the space-charge field of the beam is ignored the 
problem reduces to the common solution of the transport equation for relativistic beams in 
the material and the corresponding Maxwell's equations [i, 2]. 

The self-magnetic field of the HEB in the material is described by 

[vB] = ~o~ (Jb + J3, (1 )  

where ~ is henceforth assumed to be close to unity since the material becomes diamagnetic 
under the effect of the HEB [2]. Using Ohm's law j~ = -oV~t, the continuity equation 
V(jb+jt) =0 and the known relation for the rate of fast-electron thermalization N(Vjb = 
-eN) we easily obtain an equation for the electric-field potential ~t of the thermalized 
electrons: 

eA T 
A% = -- 

(2) 

The potential was assumed to be zero at the surface of the target, 

%(p, z ) ~ 0 ,  (p, z) CYe, (3 )  

and N and jb were  found  by s o l v i n g  t h e  t r a n s p o r t  e q u a t i o n  [3,  4 ] .  The p a t h  o f  t h e  beam 
e l e c t r o n s  was c a l c u l a t e d  by t h e  Monte C a r l o  method u s i n g  t h e  scheme o f  c o n t i n u o u s  e n e r g y  
loss and scattering on a segment from the Goudsmitt-Sanderson formulas [6]. If the elec- 
tron energy dropped below some minimum value, which was chosen so that the residual elec- 
tron range would be less than half the spacing of the net, the electron was no longer 
tracked and was assumed to have been thermalized. The number of paths of fast electrons 
tracked was of the order of a thousand. 

The effect of the self-magnetic field was taken into account by an additional change 
in the particle momentum at the end of the range in accordance with the Lorentz equation, 
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Fig. i. Current-density distribution along the thickness of the target 
(E 0 = 1MeV, N o = i000, r 0 = 2.1"10 -3 m, H = 4.2"10 -3 m, o = (~.m)-Z: 
I, 3) current density of fast electrons at I = 5"104 A and I = 105 A, 
respectively; 2, 4) current density of thermalized electrons at I = 
5"104 A and I = i05 A, respectively. Jz, A/m3" 

d m dt ([~?) = --ei l3B].  ( 4 )  

The problem was solved in the cylindrical coordinate system for the case of axisym- 
metry. As in [3, 4], we included only the aximuthal component B~,of the magnetic field, 
which was determined by the longitudinal component of the current-density vector Jz" The 
density Jz was determined as the sum of the longitudinal components of the current-density 
vectors of fast and thermalized electrons. The values of Jbz were calculated by the flux 
tube method [7] and Jtz, by solving the system (2)-(3) and Ohm's law. The Poisson equation 
(2) with boundary condition (3) was solved with difference schemes, using the Pismen-Reck- 
ford method of variable directions [8]. The essence of the method is that intermediate 
values are calculated along with the main values of the desired functions. 

The calculations were performed on a BESM-6 computer for a high-current electron beam 
of radius r 0 = (1-2)-10 -3 m, with a current I = 103-106 A, and electron energy E 0 = 1 MeV 
at normal incidence of the beam on an aluminum target with thickness H = 4.2.10 -3 m and con- 

ductivity o = 103-105 (~.m) -I 

Figure 1 shows the calculated values of the current density of both thermalized and 
fast electrons in the paraxial region. The depth in fractions of electron range is laid 
off along the abscissa axis and the z component of the current-density vector in A/Am 3 is 
laid off along the ordinate axis. The calculations showed that within the framework of 
the assumptions made, the current density of the thermalized electrons depends weakly on 
the conductivity of the material. We see from Fig. 1 that at small depths (z ~ 0.3 a 0) 
the thermalized-electron current is counter to the beam current, thus slightly decreasing 
the self-magnetic field in this region. At larger depths (z > 0.3 a0) the magnetic field 
forms mainly because of the thermalized-electron current, directed along the beam. With 
increasing beam current the relative fraction of the thermalized-electron current density 
decreases at the surface. 

Figure 2 shows the calculated values of the energy loss as a function of the HEB cur- 
rent. The distributions along the thickness of the target are shown. The relative density 
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Fig. 2. Distribution of beam energy loss along the thickness of an 
aluminum sample (E 0 = I MeV, beam radius r 0 = 2"10 -3 m): i, 2, 3, 4 cor- 
respond to currents I = 10 5 A, 5.10 4 A, 10 4 A, and I0 3 A without allow- 

ance for the thermalized electrons; i', 2', 3' correspond to currents 
I = l0 t A, 5"10 ~ A, and I0 4 A with allowance for the thermalized elec- 

trons. 
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Fig. 3. Profiles of the spatial distribution of energy loss in an 
aluminum target for a cylindrical beam of radius r 0 = 10 -3 m (E 0 = 1 
MeV): i) at I = 103 A; 2) I = 105 A without allowance for thermalized 
electrons; 3) I = 105 A with allowance for thermalized electrons. 
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of energy release p(z) = (r0/P0)(dP/dz) (P = IE) is laid off along the ordinate axis and 
the depth, in units of electron range, is laid off along the abscissa axis. Figure 2 shows 
that the effect of the thermalized-electron current is substantial in a certain range of 
values of the HEB current. At low currents I < 104 A the thermalized-electron current has 
virtually no effect on the energy release because the self-magnetic field is insignificant 
(curve 4). With increasin Z beam current the contribution of the thermalized electrons to 
the formation of the self-magnetic field grows and so does their effect on the nature of 
the energy release (curves 2, 2' and 3, 3'). With a further increase in the beam current 
the region of vigorous energy release contracts toward the surface, i.e., into the region 
where the relative fraction of the thermalized-electron current decreases (see Fig. i). 
Because of this the effect of the thermalized-electron current on the formation of the 
region of energy release becomes weaker (curves i, i'). 

From Fig. 3, which shows the energy release in cylindrical layers of the target, we 
see that the effect of the thermalized-electron current on the energy-loss distribution 
is most pronounced in the middle layers with r ~ 0.4-0.6 ~. 

NOTATION 

n0, electron range, ~0 = 2.04 cm, at E 0 = 1 MeV; ~ , relative electron velocity; y = 
(I - ~2)-~/2; e, electron charge; m, electron mass; 8 , magnetic induciton;.B~ , azimuthal 
component of the magnetic induction; N, thermalization rate of fast electrons; No, number 
of cases; E0, initial electron energy; P = IE, E is the acceleration voltage (MV), numeri- 
cally equal to the electron energy (MeV); I, beam current; r0, beam radius; p(z), relative 
density of energy release; p(z) = (r0/P0)(dP/dz) ; H, target thickness; ~, target conduc- 
tivity; P0, magnetic constant; p, relative magnetic permeability of the medium; ~, boundary 
of computation region; ~, potential of electric field of thermalized electrons; j~ and 
Jbz, current-density vector of the fast beam electrons and its longitudinal component; 7t 
and Jtz, vector of thermalized-electron current density and its longitudinal component; 
and Jz, longitudinal component of the beam density vector. 
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